The periodic motion

Any measurable quantity that repeats itself at regular time intervals is defined as
undergoing periodic motion,

If the periodic variation of a physical lT.uu:r[itir over time has the shape of a sine (or
cosine) function, we call it a sinusoidal oscillation or simple harmonic motion.

Eelaany: Prossine

AWAW
VERVAY.

(LAHED CLGEED (KM CLUMHE (L0 LR

Edevuroscanliverim —
=5 H ' r
= R 1
E1sl 1 ‘ g
i |_|:| A I .
Z 05 ‘"r & B i
= il |

s 1o 15 32035
1l (%)

«The period T is the time required for one complete
motional evele.

+The frequency £ of the motion is the number of eyeles of
the motion per second (unit is: 1 eyele/second=1 Hz). —
sFrequency and period are related according to; f = ~ Period = T
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Introduction to Oscillations

1 In order to describe the complicated forms of periodic
motion around us, usuallv we start by an analvsis of the
simplest form of oscillations,

the simple harmonic motion.

_1 The main two characteristics of the simple harmonic motion are;

(1) It is described by a second-order, linear differential equation
with constant coefficients, Thus, the Superposition principle holds,
if two particular solutions are found, their sum is also a solution.

(2] It has Amplitude-independent periods . That is, the periodic time of
the motion, is independent of the maximum displacement from
equilibrium (the amplitude) .

3.2. Linear Restoring Force: Harmonic Motion

- Consider a mass m on a frictionless surface attached to

a wall by means of a spring. . Equilibrium

- Let X, is the unstretched length of | . PR e

the spring. This position represents 3 Y .

the equilibrium position where the E[ c = :

potential energy is a minimum. P L R B b R
- If the mass is pushed or pulled away fr‘om Th:s posutmn g
the spring will be either compressed or stretched, and m-l
then exert a force on the mass. xl‘i
- This force will always attempt to restore it to its '
equilibrium position.

- To calculate the motion of the mass, we need an

expression for this restoring force .

According to Hooke's Jaw The spring's restoring force is

given by ;

F(x) = -kx




where & is the spring constant. In fact, this law is valid
only for small displacements from equilibrium, where the

restoring force is linear.
Newton's second law of motion can now be written as

mi+kx=0 (3.2.4a)
%+ ﬁx =0 (3.2.4b)
m

looking for a solution which can show that the motion is
both periodic and bounded. S5/ne and cosine functions
both can exhibit that sort of behavior. Thus, a possible

solutionis; . _ 4 sin(axt + ¢,) (3.2.5)

o, = % (3.2.6)

is the angular frequency of the system.
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(1) The motion repeats itself after a time 7, known as /e
period of the motion. Which is the time required for a

phase advance of 2r , and is given by
w,(t+T)+ ¢, =t +¢,+2x
2

r,=2
Wy

Or;




(2) The motion is bounded; that is, it is confined within
the limits — 4 < x<+4.Where, 4 is called the amplitude
of the motion and it is independent of ;.

(3) The phase angle ¢, is the initial value of the sine
function. It determines the value of the displacement x
at fime s =0.Le, x(1=0)= Asin(¢,)

(4) The term freguency , 1, , refer to the reciprocal of
the period of the oscillation or
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The unit of frequency (cycles per second, or s™) is called
the hertz (Hz).

(5) Constants of the Motion 4 and ¢, , can be determined
from the /nitial conditions as follows:

x(0) = Asin(¢,) = x,
x(0) = w, Acos(g,) = v, A?=x2+ 20

m[] ftﬂ

tan ¢, =

Vi




Simple Harmonic Motion: The Projection of a Rotating Vector

Imagine a vector A rotating at a constant angular velocity w, . Let
this vector denote the position of a point P moves in uniform
circular motion.

The projection of A traces out simple harmonic motion.

Since O=w, and 6O=a+6,

0, is the value of 0 at t=0.

Thus, the projection of P onto the x-axis is

x = Acos 0 = Acos(w,t +6,)

Or with the equivalence expression:

x = Asin(@,f +¢,) cos(w,t +8,) = cos (a)ot + ¢ — 225)

where ¢, -0, = n/2 = sin(@yt + @)

Or we could represent the general solution for harmonic motion:

X = Asin ¢, cos @t + Acos ¢, sin !

= Ccos oyt + D sin w,t
Note that: tang, = % \ AA=C"+D’

Effect of a Constant External Force
on a Harmonic Oscillator

Suppose the same spring shown in Figure 3.2.1 is held in a vertical position, supporting
the same mass m (Fig. 3.2.5). The total force acting is now given by adding the weight mg
to the restoring force,

F=—k(X-X)+mg (3.2.20)
This equation could be written F = —kx + mg

where, x=X-X,

let X, be the displacement from the new equilibrium position

obtained by setting F = 0 X,
New
0 = —k(X, - X,) + mg, which gives X; =X, + mglk. cq;;l‘i?f;ﬁm

We now define the displacement as

_mg

=X-X,=X-
x e e k




F=—kx (3.2.22)

so the differential equation of motion is again

mi+kx =0 (3.2.23)

and our solution in terms of our newly defined x is identical to that of the horizontal case.

Example (3.2.1): Effect of a Constant External Force

When a light spring supports a block of mass m vertically, the spring is
found to stretch by an amount D1 over its unstreched length. If the
block is furthermore pulled downward a distance D2 then released at

time t = 0, find: . .
(a) the resulting motion.

(b) the velocity of the block at the equilibrium position.
(c) the acceleration of the block at the top of its oscillatory motion.
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L= =1~ Solution:
Assuming the positive direction is down, at the equilibrium position we have

[ = x-l.‘-‘
:: F,=0=-kD, + mg
o + X
3 R ' .
= [his gives us the value of the spring constant k:

B : D1

. m
P k="%
— b

From this we can find the angular frequency of oscillation:

k
o, = \P _ s
m D,
We will express the motion in the form

Then, X = Acos w,f + B sin w,t

x =—Aw, s wyt + Bw, cos @t



Applying the initial conditions , we find
xo=D,=A & vy=0=Bo, =—> B=0

The motion is, therefore, given by

(a) x=D, cns[ it}
D,

Note that the mass m does not appear in the final expression.
The velocity is then

(center)

- g g . _ g
= — — = x=-D
(b) x=-D, D Slf{ 5 f] E— 24D

1 ] 1

and the acceleration
g g {top) ¥ =D g
c ¥=—-D,=-cos| (=t X =45
(©) ED [ ’91 J —— > D,

In the case D, = D, the downward acceleration at the top of the
swing is just g.

This means that the block, at that particular instant, is in free fall;
that is, the spring is exerting zero force on the block.

Example (3.2.2):

The simple pendulum consists of a small mass m swinging at the
end of a light string of length 1. The motion is along a circular arc
defined by the angle 0, as shown in the Fig.

The restoring force is ; F, = -mg sin 6.
Therefore, the differential equation of motion is;

ms =—mgsinf

Since s =10 and, for small 6, sind =6, we can write the differential
equation of motion as follows:



or S+=s=

§+%€=0

Although the motion is along a curved path, the differential equation
's mathematically identical to that of the linear harmonic oscillator;

.k
X+—x=0
m
Thus, for the angles that the approximation sin 6 = 6 is valid, we can
conclude that the motion is simple harmonic with angular frequency

® = 8, cos (@t +8,)

g
. = =
PN
and period
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3.3| Energy Considerations in Harmonic Motion

Consider a particle under the action of a linear restoring force
F_=-kx. Let us calculate the work done by an external force
F.., in moving the particle from the equilibrium position (x = 0)
to some position x. We have, F_, = -F, = kx, so

2
X

b | ==

W :j;F;ﬂdx = jkxdr =
0 0

This work is stored in the spring as potential energy: V(x), where

V(x)=1kx’

Thus, F, = —dV/dx = —kx, as required by the definition of V. The total energy, when the
particle is undergoing harmonic motion, is given by the sum of the kinetic and potential

energies, namely,

E= %ma’cz + %kx2 (3.3.3)

The motion of the particfe can be found by starting with the energy equation (3.3.3).
Solving for the velocity gives

OE  kx2 12
= i[__ - —] (3.3.4)

m m

which can be integrated to give t as a function of x as follows:
‘o J- dx

+[(2E/m) — (kIm) x> ]2

in which C is a constant of integration and A is the amplitude given by

2
A= (%) (3.3.6)

We also see from the energy equation that the maximum value of the speed, which
occurs at x = 0. Accordingly, we can write

= F(m/k)"? cos™ (x/A)+C (3.3.5)

wecallo

1 9 17 42
As the particle oscillates, the kinetic and potential energies continually change. The
constant total energy is entirely in the form of kinetic energy at the center, where x = 0
and & =+v, , and it is all potential energy at the extrema, where % =0 and x = £A.



EXAMPLE 3.3.1

The Energy Function of the Simple Pendulum
The potential energy of the simple pendulum (Fig. 3.2.6) is given by the expression
V =mgh

where h is the vertical distance from the reference level (which we choose to be the level
of the equilibrium position). For a displacement through an angle 0 (Fig. 3.2.6), we see
that h=1-1cos#, so

V(6) =mgl(1 — cos 0)

Now the series expansion for the cosine is cos@=1 — 6%2! + 644! — -, so for small 6
we have approximately cos @ = 1 — 6%/2. This gives ;

V(0) = ;mgl6°
or, equivalently, because s =16,
1 Mg 2
7
Thus, to a first approximation, the potential energy function is quadratic in the dis-
placement variable. In terms of s, the total energy is given by

V(s) =

1 .2, 1Mg 4
E=-mé" +3 78
in accordance with the general statement concerning the energy of the harmonic oscil-

lator discussed above.

EXAMPLE 3.3.2

Calculate the average kinetic, potential, and total energies of the harmonic oscillator.
(Here we use the symbol K for kinetic energy and T, for the period of the motion.)

Solution:

_ 1 % _ 1l %y .o
<1<>_F0jO K(t)dt_f)jo L ma? dt

2

but

x = A sin(@,t + ¢,)
X = @y A cos(,t + ¢,)

Setting ¢, = 0 and letting u = @t = (27/T,) - t, we obtain
(K) = l[lmw(z,AQJ‘TO cos®(w,t) dt]

R EUNT T Y
—é;t-[éma)oA J;) cos uduil



We can make use of the fact that

1 ¢2 2
S (sin’u + cos*u) du = —LI "du=1
2m 90 2m 90

to obtain

1 2=
——I cos*udu =+
27 %0 2

because the areas under the cos? and sin? terms throughout one cycle are identical. Thus,
1
(K) =7 mwy A
The calculation of the average potential energy proceeds along similar lines.
V= %kx2 = %kA2 sin®w,t
TR N L
(V)=3kA fo--“o sin“w,t dt
e 1

%%,
3 Jo sin?udu
79

1
=3
1742
Now, because k/m = w?Z or k= ma)g, we obtain
(V) =3kA® = ;mwiA® = (K)
(Ey =(K)+(V) = ;mwjA® = ;kA® = E

The average kinetic energies and potential energies are equal; therefore, the average
energy of the oscillator is equal to its total instantaneous energy.



